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Abstract 

We numerically simulate multiple light scattering in discrete disordered media represented by large 
clusters of irregular non-absorbing particles. The packing density of clusters is 0.5. With such 
conditions diffuse scattering is significantly reduced and light transport follows propagation channels 
that are determined by the particle size and topology of the medium. This kind of localization 
produces coherent backscattering intensity surge and enhanced negative polarization branch if 
compared to lower density samples.  

 

1. Introduction 

Optical properties of discrete disordered media are studied in various fields like remote sensing, photonics 

and biology. For instance, optimization of random lasers [1], beam shaping and focusing in random media 

[2], remote sensing applications in geophysics and planetary science [3, 4] require theoretical modeling of 

light scattering in dense many-particle structures. Various transport phenomena like weak and strong 

(Anderson) localization of light [5, 6] are predicted and observed for dense media with high degrees of 

disorder. This regards not only classical electromagnetics but also quantum optical systems [7, 8]. In 

classical optics such properties can be utilized for controlled transmission and backscattering from granular 

slabs (e.g., [9, 10]) as well as retrieval of the information about physical properties of a medium from optical 

measurements, i.e. solving the inverse problem [4]. 

We are interested in numerical simulations of light backscattering from powder-like surfaces and 

interpretation of the photopolarimetric data obtained from laboratory measurements and optical 

observations of the remote objects like surfaces of the Earth and the Solar System bodies. Such surfaces are 

formed by randomly shaped particles with different sizes and mineral materials that are densely packed up 

to a packing density value of ρ = 0.5. Optical opposition phenomena like intensity surge (IS), i.e. nonlinear 

enhancement of intensity, and negative polarization (NP) (e.g., [11-13]) of light scattered at large scattering 

angles are often observed for this kind of targets. Their parameters depend on the physical properties of the 

scatterers and the structure of the upper surface layer. Hence, such dependences can be utilized in the data 

retrieval. 

The backscattering response from particulate surfaces is a combination of single scattering from 

individual particles and multiple coherent and incoherent scattering in the bulk medium. Isolated irregular 



particles are known to produce backscattering intensity enhancement and a strong NP branch (e.g., [14, 

15]). At the same time coherent multiple scattering is also a strong factor that presumably stands behind 

both phenomena [16-21]. However, the specific role of single and multiple scattering in a dense medium and 

their relative contributions to backscattering remain unclear and require further theoretical studies. There 

are also a few more specific questions that should be addressed. In particular, it is important have an 

estimate of the mean transport length of light in a non-absorbing or moderately absorbing dense medium 

consisting of irregular particles slightly larger than the wavelength. This can give an idea of how thick the 

surface layer is that forms backscattering response carrying information about its physical properties.  Also, 

one has to know how large a finite sample should be to be a representative scattering volume which is a 

basic element in the radiative transfer models. This includes also the characteristic spatial scale of multiple 

scattering effects that contribute to IS and NP.  Direct time-domain simulations with a realistic model can 

also display the exact pattern of the near field interaction of irregular particles larger than the wavelength if 

they are placed in close vicinity of each other. After all, a technical question is open: how large samples with 

random irregular particles can be handled in a systematic study with available high-performance computing 

(HPC) resources and a versatile Maxwell solver. 

The solution of the problem requires numerical methods that allow description of arbitrary geometries of 

individual scatterers and their dense placement. Due to the general complexity of the task simulations 

avoiding approximations have not been done so far for such structures. We note that random irregular 

constituent shapes should be taken into considerations as scatterers with perfect geometries cannot be 

representative due to their peculiar optical properties. The geometry of individual scatterers also 

determines the medium topology at dense packing which also should be taken into account. Additionally, 

one should consider systems much larger than the wavelength of the incident light and with large enough 

number particles to adequately simulate collective scattering effects. On the other hand, dense packing 

implies that the distances between constituents are much smaller than the wavelength. Thus, the listed 

conditions make the problem multi-scale which requires HPC hardware and numerical methods that allow 

efficient parallelization. 

Simulations of light scattering in multi-particle systems and very large sizes and arbitrary shapes of 

constituent particles are possible in the geometric optics (GO) approximation [22-30]. An obvious limitation 

of the GO models is that wave optics effects are usually not taken into account and, therefore, backscattering 

cannot be modeled correctly.  

A recent development of a hybrid approach [31] in which ray tracing in a dense medium is supplied with 

accounting for coherent backscattering enhancement, allowed numerical simulation of multiple scattering in 

a very large sample and comparison with experimental laboratory of an agglomerate made of micrometer-

scale silica spheres [32]. However, in that work backscattering region has been omitted and the 

performance of the model is not known in this case.  

Successful wave-optics simulations of light scattering by very large samples based on the superposition T-

matrix method and parallel CPU/GPU implementations have been reported recently (e.g., [33-35]). 

However, such simulations are possible for dense systems of spherical particles only. The T-Matrix method 

formulation uses vector spherical harmonics for decomposition of the field at distances larger than the 

radius of the smallest sphere circumscribing a particle. Therefore, it becomes invalid in a multi-particle 

structure with non-spherical particles placed in the near field of each other closer than the sphere radii.  



In a recent work [36] a promising method called the global polarizability matrix has been introduced. In its 

formulation a circumscribing sphere can be replaced by a surface of arbitrary shape, e.g., matching the shape 

of an individual particle, thus, allowing dense packing and correct accounting for the near-field interaction of 

closely placed groups of particles. As an example, a light scattering problem for a cluster of identical rods is 

considered in the paper.  For practical applications the performance of the method for structures consisting 

of hundreds/thousands of random particles should be tested. 

Figure 1:  Spherical cluster with N = 5000 particles and packing density ρ = 0.5 and its cross-section.  

 

2. Model description  

Here we apply a model that represents realistic structure of powder samples. We consider dense systems 

of random irregular particles with sizes comparable to or larger than the wavelength of the incident light. A 

3D electromagnetic problem is solved numerically avoiding approximations and using the Discontinuous 

Galerkin Time Domain (DGTD) method [37].  It is based on unstructured meshing and its numerical scheme 

can be parallelized with high efficiency.  

 The simplest target geometry that allows simulation of light scattering in the entire range of scattering 

angles is a sphere. Therefore, we consider spherical clusters of particles. Model cluster preparation includes 

generation of constituent shapes and their packing with large enough packing density. As in our previous 

works on light scattering by isolated particles, we use Gaussian Random Field (GRF) shapes [14, 15, 38-39]. 

Having a large pre-generated set of particle samples represented by triangular facets we can apply the 

particle packing routine.  

Basic random uniform distribution of non-overlapping irregular shapes allows densities up to ρ ≈ 0.1 

[22,28]. Generation of model media with ρ > 0.1 is, however, a challenging task: one has to apply special 

algorithms that minimize free space between particles accounting for their irregular shapes.  In Ref. [23] we 

used simple Boolean summation of a few pre-generated media samples with ρ = 0.1 reaching the total 

density of ρ = 0.3. In Refs. [28, 29] we applied isometric inflation with Monte Carlo rotation of particles. The 

maximum packing density achieved with such an approach was ρ ≈ 0.4.  

 Here we apply the Bullet physics engine [40] which simulates dynamics and interaction of multiple 

geometrical objects in time domain. In this framework we use a point gravity source positioned in the center 

of the sparsely and uniformly distributed initial set of particles. Adjusting their friction and the parameter of 

minimal distance between neighbors one can simulate evolution of such a set into a spherical cluster with 

densities up to ρ ≈ 0.55. Fig. 1 shows an example of such a cluster and its cross-section. The sample consists 

of N = 5000 particles packed with ρ = 0.5.  



We consider three cases of clusters with size parameters kR = 50, 100 and 150 (k is the wave number and 

R is the particle radius). The size of constituents is taken kRc = 10 which corresponds to the numbers of 

particles of N = 200, 1600 and 5000 for the corresponding cluster sizes. The packing density is ρ = 0.5 in all 

cases.  For the size kR = 100 we also study the role of packing density and consider two separate cases with 

relatively sparse packing of ρ = 0.16 and uniform and non-uniform distributions of constituent particles. 

The material is non-absorbing in all cases and the complex refractive index is m = 1.5 + 0i. 

After a sample of a cluster is generated it is taken as an input in a tetrahedral mesh generator. 

Discretization of space in a structure with very close placement of constituents requires high spatial 

resolution in the corresponding regions. Unstructured meshing with local mesh refinement becomes very 

helpful here. An important factor, that makes an impact on the total simulation time, is the reduction of the 

time step in the explicit time integration of Maxwell’s equations in the DGTD numerical scheme due to the 

presence of small elements. Thus, for the numerical packing we choose a small but non-zero parameter for 

the minimum distance between particles keeping it much smaller than the wavelength and maintaining 

large packing density values and an acceptable time step value. 

 We consider plane wave as an illumination source and use total field/scattered field technique to simulate 

propagation of a plane wave in a finite domain. Unpolarized light source is simulated by means of two 

simulation runs with linearly polarized illumination with perpendicular polarizations. Perfectly matching 

layer boundary conditions are used to model light scattering in open space. 

Figure 2: Snapshot of the electric field amplitude component Ex propagating in Z direction in a cluster with 

200 particles (a) and an enlarged fragment showing distributions of the three components of the electric 

field (b). The incident beam is Ex-polarized. 

 



The computed and measured scattered near field around a cluster is transformed to the far field [39] and 

the scattering matrix elements are obtained as functions of the scattering angle. The curves are averaged for 

each cluster size over 10 samples with 6 orientations per sample and over azimuth angle.  

Figure 3:  Distribution of the logarithm of intensity (log(|E|2) of the near field in dense clusters of 200 

irregular (a) and spherical (b) particles.  

 

3. Results and discussion 

At first, we analyze the light transport pattern, i.e. near field distribution as a light beam propagates 

through a cluster. This may give us better understanding of the near-field interaction between close 

neighbors and its role in the formation of the far-field scattering quantities.  For this purpose, we simulate 

illumination with a focused beam in order to localize the entrance spot on the surface of a cluster. The cross-

section of the beam is smaller than the cluster size and it illuminates only a few particles on the surface. In 

Fig. 2a we show a 2D snapshot of the Ex component of the resulting internal electric field distribution. The 

incident beam is Ex-polarized and propagates in Z direction. The cluster has the size of kR = 50 and consists 

of N = 200 particles. This is a typical pattern that is different for different samples but its structure always 

remains the same. Here, a high packing density of particles becomes a key factor that significantly changes 

the pattern of light transport in comparison to multiple scattering in sparse media.  

After transmission by particles in the very upper layer light follows chains of particles in the depth which 

form propagation channels. This behavior is polarization independent, i.e. waves with different polarizations 

follow the same propagation paths. Near field interaction includes focusing on the neighbor particle after 

transmission and whispering gallery wave coupling between the surfaces of the neighbors. Such threads can 

also split, if two particles are hit on the way, and form random fractal geometry. One can see also in Fig. 2b 

that the Ez component of the electric field gets enhanced on the way with hotspots located in the regions of 

the near field interaction between close particles. This indicates an important role of the radial component in 

the propagation. It quickly decays with distance as ~1/r3 but becomes influent at dense packing. In general, 

such mechanism results in a percolation-like transport that is determined by the fractal topology of the 

medium.  

For better illustration we present the result of the same simulation in 3D view. In Fig. 3a we visualize the 

logarithm of intensity in frequency-domain, i.e. log(|E|2), distributed in the cluster in the form of the volume 

color map. The colored structure spans over 90% of the total near-field energy which means high 

localization of light in the propagation channels and little diffuse unpolarized scattering. Measuring fractal 



dimension of such a computed energy distribution (e.g. [42]) one can characterize the complexity of a 

disordered medium which is an important geometric property in addition to the parameter of packing 

density. We note also, that the scattering matrix elements that are measured in the far field may also contain 

this kind of complexity information which can be potentially retrieved through photopolarimetric 

measurements. 

We also calculated, for comparison, a similar energy distribution for a cluster consisting of 200 spherical 

particles with the same size and material packed with ρ = 0.5. Fig. 3b demonstrates how different the field 

pattern can be if the constituents have perfect spherical shapes. A medium of densely packed spheres has 

lower degree of disorder than that of irregular particles. As a result, such a topology forms more efficient 

wave guiding chains of particles.  

With this finding we can refer to the so-called one-dimensional models of spectral albedo of 

powders [43,44]. In these models light propagation is approximated by multiple reflections and 

transmissions in a sequence of slabs with thicknesses equal to the average size of particles. In fact, 

this approximation is consistent with our result. Single propagation channels can be considered as 

1D paths. High localization of light in the channels can explain why such a simple approximation can 

be valid, to some extent, in the wave optics regime.  

In general, we see that light transport in a densely packed system of particles can be characterized as a 

percolation-like process rather than multiple scattering from particle to particle, or, from elementary 

volume to elementary volume, as it is usually described with conventional radiative transfer theory [45, 46]. 

We note, that in the case of the GRF cluster the characteristic transport length is smaller than the cluster size 

(kR = 50). It can be even smaller at non-zero absorption. Accounting for the gradient of intensity at this scale 

and the complexity of the field distribution, that quickly changes with distance, the elementary volume 

approach cannot be valid in such conditions. 

 In Fig. 4 we compare the computed far-field scattering angle functions of intensity and 

polarization for three cluster sizes. We add also a “single-scattering” curve calculated for an 

ensemble of isolated GRF particles with kRc = 10.  Generally, the samples become less transparent 

with increasing size. At backscattering we observe an IS that is apparently caused by coherent 

propagation. Obviously, this is a property of the structure of clusters and not the size as in the case of 

Figure 4: Computed scattering angle dependencies of intensity in logarithmic scale (a), linear 
scale near backscattering (b) and the degree of linear polarization (c) for single GRF particles 
with size parameter kRc = 10 and clusters of GRF particles with kR = 50, 100 and 150 and 
ρ = 0.5. 



solid compact particles [13]. The curves in this angular range do not depend on the cluster size if it is 

large enough with respect to the wavelength and the size of constituents. In other words, angular 

dependency of intensity of scattered light should converge to the case of a semi-infinite medium with 

increasing cluster size and this convergence starts in the backscattering region. 

The broad IS is a characteristic feature of single particles [14]. In principle, it may also contribute 

the total IS from a cluster making it less sharp. We note, that 1D coherent transport in the 

propagation channels, discussed above, may also contribute in the transport of energy in the 

backward direction.  

Figure 5:  Two topologically distinct clusters with the same packing densities ρ = 0.16.  

 

The linear polarization of forward scattering (small scattering angles) shows the effect of cluster 

edges where the curves are mostly formed by the positively polarized component reflected from 

external surfaces of particles in the upper layer of the cluster. This is in agreement with laboratory 

polarimetric measurements of powders at grazing angles of incidence [46] and also with our 

previous GO modeling [26]. The NP branch at large scattering angles is significantly reduced with 

respect to that of isolated particles. However, the inversion angle remains the same for all cluster 

sizes. This fact may indicate that NP is a result of contribution of single scattering from particles in 

the upper layer that is partially depolarized by the multiple scattering component. Although there is 

a large difference for clusters with different sizes at smaller angles, the curves near backscattering 

are quite close to each other. This suggests that the structure of clusters, which is the same in all 

cases, plays major role in the formation of the polarization angular dependence in this region.  

For more insight into the role of topology and packing density we consider two cases of relatively 

sparse media with the same ρ but different particle connectivity patterns. First, we take the same set 

of cluster samples with kR = 100 and remove 2/3 of all particles from each sample making a sparse 

structure with non-uniform distribution of constituents with ρ = 0.16 and N = 530 (Fig. 5a). Such 

clusters contain large voids and small agglomerates of a few particles. In the second case we generate 



a new set of samples with simple uniform distribution and the same number of constituents, so that 

the packing density also remains the same (Fig. 5b). 

In Fig. 6 we compare the IS and linear polarization curves for dense and sparse clusters. 

Interestingly, sparse clusters with non-uniform distribution of particles appear to be efficient enough 

for the coherent backscattering enhancement and are able to produce a sharp IS. This can be 

explained by the role of small agglomerates of particles which also characterizes the spatial scale of 

the collective coherent effects that form the IS. 

If particles are sparsely and uniformly distributed in space, near-field interaction is obviously 

reduced revealing backscattering properties of single particles. The IS becomes different in this case 

and is somewhat similar to the single-scattering one. We note, that clusters with the same packing 

densities but topologically distinct produce different backscattering intensity response. Real 

granular surfaces may have quite sparse structure of the upper layer having packing density values 

as low as ρ = 0.1 – 0.3 yet produce coherent backscattering IS. Therefore, sparse model media in 

correct simulations should not be uniform distributions of constituents but rather structures with 

small-agglomerate connectivity and large voids.  

Figure 6: Computed scattering angle dependencies of intensity in logarithmic scale (a), linear 
scale near backscattering (b) and the degree of linear polarization (c) for single GRF particles 
with size parameter kRc = 10 and clusters of GRF particles with kR = 100: ρ = 0.16, uniformly 
distributed,  ρ = 0.16, non-uniformly distributed and and ρ = 0.5. 



  The difference in linear polarization between dense and sparse clusters is in good qualitative 

agreement with laboratory experiments with compressed low-absorption (high albedo) powder 

samples [19, 47, 48]. The results of laboratory measurements showed that compression of powder 

samples significantly increases negative and positive polarization features keeping the same 

inversion angle. This is also the case in our simulations and can be explained by light localization and, 

correspondingly, reduction of diffuse scattering. If there are large enough (~10 wavelengths in the 

non-uniform case) voids in a cluster, or the distances between constituents are large compared to the 

wavelength multiple scattering is still present but the scattered field turns into a diffuse background. 

Figure 7: Steady state distributions of the electric field components Ex and Ez in sparse (ρ = 0.16) 
and dense (ρ = 0.5) clusters with size kR = 100 illuminated by a focused beam. 



This component is unpolarized to a high degree and suppresses strong polarization features of 

individual particles. As a result, we see similar but reduced positive and negative polarization 

features for clusters if compared to those for single particles. At ρ = 0.5 light transport becomes 

localized, there is little space for energy to diffuse out of the localization regions and to produce the 

unpolarized component. Therefore, we see enhanced NP at backscattering and positive polarization 

of light reflected from the upper layer at smaller angles.  

The above reasoning is supported by the analysis of the internal field distributions in the clusters 

with different structures. In Fig. 7 we show steady state snapshots of the Ex and Ez electric field 

components for the sparse and the dense samples with kR = 100 probed with a focused beam with 

the same width and intensity. At ρ = 0.16 the means of light transport is free space as the mean free 

path length is larger than the wavelength. As a result, we obtain a broad field distribution with many 

particles involved in multiple scattering and spanning the larger part of the cluster considering the 

narrow incident beam. In addition, one can see that the Ez component cannot participate in the 

process as it attenuates within one wavelength distance. High packing density crucially changes the 

mechanism of light propagation. The incident field interacting with the cluster surface becomes 

confined in a small region spanning just a few particles and further propagation is possible only if a 

favorable chain of particles is accidentally formed in a sample. This also supports the assumption 

that small agglomerates of particles are responsible for the formation of the IS in the cases of sparse 

clusters with non-uniform particle distribution. 

Interestingly, the polarization curves for both kinds of sparse structures almost coincide in the 

entire range of scattering angles. Small agglomerates present in the clusters with non-uniform 

distributions of particles play small role here and, in particular in the NP region. 

The polarization inversion angle near 150° for dense and both kinds of sparse clusters coincide 

with that of isolated particles. We believe this is a strong argument for single scattering as the main 

contributor in the NP near backscattering. 

 

4. Conclusion 

In conclusion, our simulations show the importance of using high packing densities and irregular 

constituent particles for modeling of light backscattering from powder samples. Light propagation in 

the considered models of dense disordered media is localized and becomes similar to a percolation-

like transport that is determined by the topology of the medium. The negative polarization near 

backscattering apparently originates from single scattering by particles in the surface layer and can 

be enhanced at large packing densities due to the reduced contribution of the diffuse component of 

multiple scattering. Such localization results also in coherent backscattering peak that appears to be 

independent on the cluster size at sizes kR > 100. 
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